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Security Margin of 5-Round DEAL
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Abstracti—DEAL is a block cipher designed by L. Knudsen. It
is a Feistel network with 128-bit block and 128-bit, 192-bit and
256-bit keys. The round function of DEAL is DES encryption
and the number of rounds is six for 128 and 192 bit key lengths.
Knudsen claimed that the 6-round DEAL and the 5-round DEAL
provide 121 bit and 88 bit securities respectively. In this paper,
we mount a reflection attack to 5-round DEAL with a time
complexity of 272 encryptions for 128-bit key length. The attack
works approximately 27° keys. We need 2°° chosen plaintexts
the identify if a key is weak. The attack is mounted only if the
key is weak. We have derived a 3-round distinguisher to mount
the attack.

Index Terms—block cipher, self similarity, reflection attack,
DEAL, weak key

I. INTRODUCTION

DEAL is a block cipher designed by L. Knudsen. It is a
Feistel network with a block length of 128-bit and key lengths
of 128-bit, 192-bit and 256-bit. The round function of DEAL
is DES encryption and the number of rounds is six for 128 and
192 bit key lengths. Knudsen claimed that the 6-round DEAL
and the 5-round DEAL provide 121 bit and 88 bit securities
respectively [13].

In this paper, we mount a reflection attack on 5-round DEAL
to show that 5-round DEAL provides 72 bit security for some
keys. The reflection attack on DEAL is given in [10]. While
the attack was successful for 6-round DEAL-192 and 8-round
DEAL-256, it failed for 6-round DEAL-128 due to the very
few number of weak keys in the 128- bit version. Indeed,
the attack has been exploited the 5-round distinguisher which
imposes too many conditions on round keys. Hence, the cost
of the identification step goes far beyond the number of weak
keys, rendering the attack unsuccessful.

In this paper, we exploit 3-round distinguisher to increase
the number of weak keys dramatically. However, it is not
given how to construct a 3-round distinguisher for the classical
reflection attack in the original paper, [10]. The statements in
[10] are given for the Feistel networks with palindromic round
keys where there are at least two pairs of palindromic keys.
Hence the reflection attack in [10] works for the ciphers of
round numbers more than five and the distinguisher is based
on at least 5 rounds. However, we make use of three-round
distinguisher to mount an attack on 5-round DEAL. So, we
derive a new statement, Theorem 1, which provides a 3-round
distinguisher.

We have seen that the probability that one half of the
plaintext is equal to one half of the corresponding ciphertext
no more deviates from the random pattern. Hence, the conven-
tional reflection attack does not work. However, we derive a
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new version of the attack by means of Theorem 1 and mounted
the attack on 5-round DEAL.

We use 25° chosen plaintexts to identify whether the key
is weak. If it is identified as a weak key, then we recover the
key with 272 time complexity, using 2% blocks of memory for
DEAL-128. The number of weak keys is 272, which is more
then the cost of the identification step.

The paper is organized as follows. We give a brief descrip-
tion of DEAL-128 in the next section. Section IlI covers the
new results on the reflection attack on DEAL. We give the
attack on 5-round DEAL in this section. Finally, we conclude
the paper with Section VL

II. BRIEF DESCRIPTION OF DEAL-128

DEAL, submitted to AES contest, is a Feistel network with
128-bit block length [13]. That is, at each round, one half
of the input is encrypted by a round function and added
to the other half and the result with the half incorporated
into the round function together form the output of the
round. The round function of DEAL is DES so that the DES
encryption chips can be used for DEAL also which provided
DEAL an advantage over the other AES contestants for the
interoperability.

The key lengths of DEAL are 128-bit, 192-bit and 256-
bit. The number of rounds is six for the 128-bit and 192-bit
versions whereas it is 8 for the 256-bit version. In this paper
we analyze 5-round DEAL for the 128-bit version.

We give the high level description of DEAL-128. The other
versions are quite similar. For the 128-bit version, the key,
K, is divided into two 64-bit parts as Ky and K. The six
round keys, RDxg,, ..., RDg,, are computed by using DES.
An 56-bit constant value, s, is used as the DES key to produce
the round kevs. The round keys are then calculated from the
64-bit raw data given as

RD — RAWY, DES(Ky)

RD — RAWy, — DES,(K1® RDx,)

RD — RAWyx, = DES.(Ky® RDg, ® strng(1))
RD — RAWyx, = DES.(K1® RDg, ® strng(2))
RD — RAWy, = DES(Ko® RDg, ® strng(4))
RD — RAWk, = DES(Ki® RDg, ® strng(8))

where strng(i) denotes the integer ¢ as the bit string. Only
56 bits of each BRI) — RAWg, is used in the ¢-th round of
DEAL, yielding to the round key RDy,. We remark that the
final round ends with a swap unlike conventional use of Feistel
networks.

There are some theoretical attacks on DEAL. The attack by
Knudsen [13] is a meet-in-the-middle attack which requires
2168 encryptions with 2!7% bytes of memory for 6-round
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DEAL. On the other hand, the impossible differential attack
on DEAL requires 2'2! DES encryption with 27° chosen
plaintexts and 2%% bytes of memory, utilizing the impossible
differentials of 5 round Feistels with bijective round functions
[13]. In [15], Lucks uses similar techniques and mounts chosen
ciphertext attack instead of chosen plaintext attack on DEAL
so as to gain information from the first round key. In [12],
Kelsey and Schneier discuss the existence of equivalent keys
and mount a related key attack.

ITI. REFLECTION ATTACK ON 5-ROUND DEATL-128

Define the Feistel structure as x; = R, , (T 1) B Ti 0
recursively with the initial conditions given by z = (zo, z1).
The initial condition z = (zg, z1) is the plaintext, the function
R is the round function of the Feistel network and & is the
“XOR” operation. The ¢-th round operation is defined as

(25, 2501) = (x5, By, (@) B 251) (L)

for ¢ < 7. The final output (z,,z,;1) is the corre-
sponding ciphertext of the plaintext (zg,z1). The stream
T0, T1y ey Epy Tppq 18 called the encryption stream of (zg, 1)
with respect to K.

The reflection attack in [10] mounted on 6-round DEAL
exploits the palindromic properties of the round keys given as

RDg,
RDyx, =

RDg, 2)
EDg, (3)

However, all the keys do not produce such palindromic round
keys. The probability that these equalities hold is roughly
27112 When Equations 2 and 3 hold, the last five rounds
of DEAL has 2% fixed points (without the final swap). Then
one can mount a reflection attack given in [10]. However, this
attack is not successful for 128-bit DEAL since the number
of weak keys, which are the keys producing the subkeys
satisfying Equations 2 and 3, is around 216, So, identifying
a weak key costs much more than the number of weak keys.
Remark that the total cost of recovering a weak key among
several keys, if exists, consists of the cost of identifying the
weak key with the cost of recovering it. Hence, the overall
complexity exceeds that of exhaustive search.

One natural extension of the attack is to increase the number
of weak keys. This can be done by loosing one of the equalities
between subkeys. In this section, we introduce a new reflection
attack on 5-round DEAI-128 by imposing only one equality
on subkeys. Hence the probability of this condition will raise to
2~35 In this case, the nmumber of weak keys is approximately
272 for 128 bit DEAL. Hence we are able to possess a resource
of 27 encryptions for the identification.

Consider the 5-round DEAL-128 by revoking the last round.
Assume that

RDyg, = RDg,. 4)

This happens with a probability of 27%%, We will have a 3-
round reflection for the rounds 2, 3 and 4 in this case. However,
we can not use the theorems in Section IV of [10] since
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the theorems are not valid for a 3-round distinguisher. For
instance, it is given in [10] that

Pr(zp=2,) =2 5(2-2"%)

which is a distinguisher in order to identify a weak key for the
Feistel networks with palindromic subkeys and bijective round
functions. Because, Pr{zy; = z,) in the case of a weak key
is more than twice as much as Pr(zo = z,.) in random case.
The conventional reflection attack given in [10] exploits this
distinguisher. However, the probability Pr{zy = =) will no
more be able to be distinguished from the random case when
the number of rounds satisfying the palindromic subkeys is
three and the round function is a permutation. Therefore, the
attack given in [10] will not work in this case.

We derive another statement to mount a reflection attack
on 5-round DEAL-128 where there is a 3-round reflection
property.

Theorem 1: Let (zg,x1,T2,Ts3,T4,T5) be the encryption
stream of a 4-round n bit block Feistel network whose
round function is a random permutation for any key. Assume
k1 = k3. Then we have

a) rog = Iy if and Olﬂy if X1 = ¥3.

by Pr(zg = z4) = 272 (which is random) and
Pr(Rg, (z2) =0z = 24) = 1.

Proof: Consider a Feistel network of 4-round with an
encryption stream (zo,z1, T2,Ts, Z4,Ts) where k1 = ks,
Assume zg = x4. Then Fi (r1) = Fi,(z3) since zp =
By (z1) ® 22 and 24 = Fi,(z3) © z3. On the other hand,
F'is a permutation by the assumption. So, 7 = z3. Assume,
on the contrary that 1 = z3. Then,

Ty — Fkg (l‘g) [an) o — Fk:g (.’131) & o — Fk:1 (IQ) & T — Xg.

So, we have proved that zy = z4 if and only if there is
fixed point for the first three rounds. So, zo = x4 implies
that Rg,(z2) = 0. This fact is given in [7], [16], [17]. Hence
Pr(Bg,(z2) = 0|zg = z4) = 1. On the other hand, zy = z4
only if Fg,(z2) = 0. Because zg = x4 means (zg,z1) is a
fixed point and a fixed point occurs only if Ry, (z2) = 0. The
probability that R, (z2) = 0 is roughly 2*/2 for a random
permutation F. Hence Pr(zg = z4) = 27/2. [

Corollary 1: Assume k1 = ks for a given 4-round
nn bit block Feistel network with an encryption stream
(r0,%1,%2,%3,%4,%5). Assume also that the round functions
are all permutations. The equality x5 = x4 holds if and only
if £1 = Ry, (z4) D z5.

Proof: Let (zo,%1,%2,%3,%4,%5) be the encryption
stream of a 4-round Feistel network with permutation round
functions such that k1 = k3. Assume that zg = z4. Then
x1 = x3 by Theorem 1. On the other hand z3 = Fi, (z4) D xs.
Hence, £1 = Fj, (v4) & z5. Conversely, if 1 = By, (z4) b 25
then x; = s and hence oy = x4 again by Theorem 1. | |

Let us remark that Corollary 1 states that whenever we have
an equality between the right part of the plaintext and the left
part of the ciphertext, we have an input-output pair for the last
round function. This was not always true when the number
of rounds is larger than 4. There was a probability that the
equality between the right and the left parts of plaintexts and
ciphertexts respectively might happen randomly, not due to a

Proceedings

184

17-18 Mayis May2012 Ankara/TURKEY



5. Uluslararasi
Bilgi Giivenligi ve Kriptoloji
Konferansi

fixed point. In this case, the equality 1 = Ry _(z,) @ zr41
would most probably be not satisfied.

Corollary 2: Assume k; = k; for a given 4-round n
bit block Feistel network. For a given x1, let P, =
{(zg,z1)|xo € GF(2™?2)}. That is, P,, is the set of plaintexts
whose first halves take all the values and second halves equal
to a fixed z1. Then there is only one element (xg, z1) of Fp,
such that the right half of the ciphertext of the encryption of
(zo,z1) is zo and the ciphertext is (zl & Fy,(20), z0).

Progf: Let Py, = {(z¢,71)|za € GF(2"/?)}. Then the
left part of P, takes all the possible values. On the other hand
Ty = Iy, (71) @ . Hence, x5 takes all the values possible
exactly once. Going on so, F,(x2) takes all the values exactly
once since I, is a permutation. Hence there exists only one
xp such that Fi,(ze) = Q. Let zg be the left part of the
corresponding plaintext for this zs. Then (zo,z1) is a fixed
point by Theorem 1. This means that x4 = x¢ and x5 =
zl & Fr, (zq). |

We are ready to mount a reflection attack on 5-round DEAL
(WLOG assume there is no final swap). Let o € GF{25%) be
any fixed element. Then encrypt all the plaintexts whose right
parts are equal to . If subkeys satisfy, RDx, = RDy, then
we expect a three-round reflection for the 2nd, the 3rd and
the 4th rounds of DEAL. On the other hand there exits z
such that (o, ) is expected to be a fixed point by Theorem 1
and Corollary 2. Hence, we observe o at the right half of the
ciphertext. Among all the encryptions of 284 chosen plaintext,
a is occurred only once as the right half of a ciphertext. In
this case, we are sure that a fixed point occurs by Theorem 1.

On the other hand, store the values (k, DESg{e)) sorted
by DESy{a) when k takes all the values. So there are 2°6
blocks. This can be considered as the pre-computation phase
of the attack since it can be performed at any time, particularly
before collecting the real data.

Let (z,a) be the plaintext whose encryption is (y, ). Then
we have a fixed point for the intermediate three rounds and
hence

DESk (a)® DES, (o) =z dy

by Theorem 1. Similarly, choose another value 3 and encrypt
all the plaintexts whose right halves are 5. Then we have
another equation for 3:

DES,, (B DES,, (B)=x Dy
where the encryption of (z, /) is (y, 5). Solve the equation
DESg, (a) e DES,, (o) =z by

by guessing %y and recovering ks from the table
{k, DESy(a)) sorted by DESg(a). There are roughly 24®
solutions for (k1,ks). On the other hand, these solutions
must satisfy the equation deduced by 5. The right keys
always satisfy the equation. Any arbitrary key pair satisfies
the equation with a probability of 2754, Hence, the probability
that there is a wrong key pair satisfying both the equations is
approximately 218,

If there is no key pair satisfying both equations then our
assumption is wrong. That is, we have no equality: RDg, #
RDg,. In this case we terminate the attack with 2% chosen
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plaintexts. If there is a key pair satisfying both equations then
we conclude that RDg, = k;. This gives 56 bit information
of the main key. Search the remaining 72 bits of the key
exhaustively if the key is identified as a weak key. Let us
remark that there may be solutions to (1, ks) for some keys
even though RDy, # REDyg, since the probability of finding
a solution ameng 2''2 subkey candidates is 2~ '® in this case.

The data complexity of the attack is 2% chosen plaintexts.
We need a memory of 2°% pairs of the form (k, DESg(a)).
Each pair is 15 bytes. At the end we recover the key with 272
time complexity if the key is weak. That is, RDyx, = RDy,.
The exhaustive search on 72 bits is done only once at 219
identification steps.

IV. CONCLUSION

We have analyzed the security margin of 5-round DEAL
by means of a self-similarity attack. We have mounted a
reflection attack on 5-round DEAL with a time complexity
of 272 encryptions if the key is a weak key for DEAL-128.
The attack works for approximately 272 keys and we have
used 25° chosen plaintexts to identify if the attack works for
a given key, before mounting the attack.

We have needed a 3-round distinguisher to mount a re-
flection attack successfully on 3-round DEAL. However, the
reflection attack on Feistel networks given in [10] does not
work for a 3-round distinguisher. So, we have derived a new
version of the reflection attack for the Feistel networks. This
new derivative makes use of 3-round distinguisher and can be
successtully mounted on 5-round DEAL faster than the brute
force in terms of the overall complexity.
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